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Abstract

Western Equatorial  Africa is  one of the least  sunny areas in the world.  Yet,  this  has

attracted  little  research so  far.  As  in  many  other  parts  of  Africa,  light  availability  is  mainly

estimated  using  in-situ  measurements  of  sunshine  duration  (SDU).  Therefore  this  study

conducts the first characterization of SDU evolution during the annual cycle for the region. It

also evaluates the skill of satellite-based estimates of SDU from the SARAH-2.1 data set.

Mean annual  SDU levels  are  low:  less  than 5h day-1 at  the regional  scale,  with the

sunniest stations in the northeast (Cameroon, Central African Republic) and the least sunny in a

~150km wide coastal  strip in Gabon and Republic  of Congo (RoC).  For most of  the stations

except  the southeast  ones in the Democratic Republic  of  Congo,  the lowest SDU levels  are

recorded in July-September, during the main dry season, with persistent overcast conditions.

They are as low as 2.5h day-1, especially on the windward slopes of the Massifs du Chaillu, du

Mayombé, and of the Batéké plateaus in Gabon and RoC.

Although the mean annual and monthly spatial patterns are well reproduced in SARAH-

2.1, SDU levels are systematically overestimated by 1 to 2h day-1. The largest positive biases are

recorded during the December-February dry season, especially at the northernmost stations.

Analyses at the daily time-scale show that SARAH-2.1 biases arise from a two-fold problem: the

number of  dark days (SDU<1h day-1) is  50% lower than observed while that of  sunny days

(SDU>9h day-1) is 50% higher than observed.
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1. Introduction

Solar  radiation  is  a  key  component  for  climate  and  ecosystems  functioning,  and  is

relevant  for  many applications such as in the fields of  energy,  agronomy,  hydrology.  In  the

energy field,  the seventh goal  of  the Sustainable Development Goals  of  the United Nations

(United Nations 2015,  https://sdgs.un.org/goals), which aims at ensuring access to affordable,

reliable, sustainable and modern energy for all by 2030, implies a shift away from fossil-fuel-

based sources towards renewable energy sources (e.g., Gielen et al. 2019). Both Photovoltaic

(PV) and concentrating solar technologies (CST) systems rely on solar radiation measures and

estimates, and would be promising solutions for sustainable power production (Neher et al.

2020; Hagumimana et al. 2021), especially in Sub-Saharan Africa where more than half of the

people still lack access to electricity (e.g., Quansah et al. 2016).

In  the  agronomic  field,  solar  radiation  is  known  to  control  and  play  on  several

parameters critical for plant growth and crop yields. For example with regards to phenology,

solar radiation and photoperiodism have been recently shown to be the main controlling factors

of crops growth periodicity in Africa (onset, end, Adole et al 2019, flowering, Upadhyahya et al

2021). The evergreen forests functioning is also tightly related to solar radiation (Yang et al

2021). This is especially true in Amazonia where mean annual variations in light availability have

been shown to be the governing factor for photosynthesis (Huete et al. 2006; Myneni et al.

2007; Wagner et al. 2017): the sunny dry season sustains the highest photosynthesis levels.

The picture is different for Central Africa forests. First, because mean annual rainfall is

much lower, forests photosynthesis is primarily tied to water availability (Guan et al. 2015). The

mean seasonal cycle of photosynthesis is in phase with that of rainfall: both are bimodal with

two maxima in March–May and September–November (Gond et al. 2013). At the interannual

time-scale,  anomalously  low rainfall  amounts during key periods of  the seasonal  cycle have

been shown to lead to decline in forest greenness (Zhou et al. 2014). Second, the seasonality

and quantity of light available for forests in Central Africa are different from those in Amazonia.
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The highest light levels are recorded during the rainy seasons (Philippon et al 2016, Bush et al

2020) and not during the dry seasons. Moreover, the dense forests of Western Equatorial Africa

(WEA hereafter) grow under particularly low light levels (Philippon et al. 2019) mainly because

the main dry season is characterized by overcast skies (Dommo et al. 2018).

In  WEA  as  in  many  other  parts  of  Africa,  measurements  of  incoming  global  solar

radiation are infrequent. Pyranometers are rarely installed at synoptic weather stations. Most

stations are equipped with the relatively cheap and easy to maintain Campbell-Stokes sunshine

recorders  which  provide  sunshine  duration  records  (SDU  hereafter). Actually,  SDU  is  the

measured characteristic  of  solar  radiation  with  the  longest  records,  thus  yielding  the  most

robust  results  with  respect  to  the  mean  sunshine  climatologies  and  long-term  variability.

However, time series lengths does not compensate for coarse spatial cover.  Thus to get an as

accurate spatial picture as possible of light availability in WEA forests, it is necessary to rely on

satellite products.  Most of them, though,  provide estimates of solar  radiation and not SDU.

Interestingly,  the  EUMETSAT  Satellite  Application  Facility  on  Climate  Monitoring  (CMSAF

hereafter) has recently issued a 35-year record of SDU estimates for the Africa-Europe zone

from Meteosat within the SARAH-2.1 product.

Therefore the objective of this study is twofold: (1) characterize sunshine duration in

WEA: actually this is one of the areas in the world with the least sunshine, yet this has attracted

surprisingly  little  research  so  far;  (2)  assess  the  reliability  and  accuracy  of  SARAH-2.1  SDU

estimates  against  in-situ  measurements  from  two  independent  databases:  the  Food  and

Agriculture Organisation (FAO) archives and the SYNOP weather observations.

The main questions we intend to answer are: what are the observed levels of sunshine

duration across WEA? How do they vary along the annual cycle? What are the physical factors

explaining these variations? How good is SARAH-2.1 at reproducing the mean spatial patterns

and seasonal evolution of SDU as compared to in-situ measurements?

The study is organized into four sections. Section 2 describes the three SDU databases

used, namely SARAH-2.1, FAO and SYNOP. Methods used to characterize SDU mean space-time
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variations,  and  to  assess  SARAH-2.1  accuracy  vs surface  measurements  are  also  presented.

Results are provided in section 3. SDU mean annual patterns and monthly evolutions are first

discussed. A division of WEA into characteristic areas based on SDU mean seasonal cycles is

provided. The dependence of SDU mean spatial patterns on topography is also assessed. Then

the accuracy of SARAH-2.1 SDU estimates at the daily time-scale is evaluated with a focus put on

the June–September overcast dry season. Links with cloudiness are also explored. Section 4

closes the paper by discussing and summarizing the findings.

2. Data and methods

In the present study the focus is put on WEA, defined as the region located between

latitudes  8°S–7°N  and  longitudes  8°–20°E  (Figure  1a).  It  comprises  southern  Cameroon,

Equatorial  Guinea,  Gabon,  the  Republic  of  Congo  (RoC),  the  southwestern  Central  African

Republic (CAR) and the western Democratic Republic of Congo (DRC). We jointly analyze three

independent  databases  of  SDU:  CMSAF  SARAH-2.1  satellite  estimates,  and  in-situ

measurements  extracted from the FAO database  and from SYNOP  reports.  Only  pixels  and

stations located within WEA were extracted from the three databases. We selected the closest

SARAH-2.1 pixels to the respective FAO and SYNOP stations. The main characteristics of these

databases are described below.
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Figure  1:  Topography  (a)  and  location  of  the  stations  extracted  for  WEA  from  FAO  (b)  and  SYNOP  (c)

databases.  There are 53 FAO and 17 SYNOP stations.  In b) the dashed cyan line indicates to the SW/NE

transect analyzed.

2.1. CM SAF SARAH-2.1 sunshine duration estimates

The  CM  SAF  SARAH-2.1  climate  data  record  (referred  to  as  'SARAH-2'  hereafter),

provides sub-daily, daily and monthly records for Europe and Africa of six solar radiation related

parameters among which are daily and monthly sunshine durations. Records cover the 35-year

period 1983-2017 with a 0.05° lat.–lon. resolution and are derived from measurements from the

MVIRI  (Meteosat  Visible  and  InfraRed  Imager)  and  SEVIRI  (Spinning  Enhanced  Visible  and

Infrared  Imager)  instruments  on-board  the  geostationary  Meteosat  2–10  satellites.  SDU

estimations are based on the Direct Normalized Irradiance (DNI) estimates. The WMO threshold

for  bright  sunshine  is  defined  as  DNI  ≥  120W/m2.  Daily  SDU  is  computed  as  the  ratio  of

Meteosat daylight slots with DNI exceeding the WMO threshold to all potential daylight slots

multiplied  by  the  day-length.  Details  on  the  computation  of  SDU  and  in  particular  on  the
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weighting applied to slots as a function of the surrounding grid-points can be found in Kothe et

al. (2017).

2.2. Sunshine duration in-situ measurements from the FAO database

The  Food  and  Agriculture  Organisation  has  compiled  a  global  agroclimatic  database

called  'FAOCLIM2'  (http://www.fao.org/nr/climpag/pub/en1102_en.asp)  which  contains  long-

term monthly averages at ~28800 stations for up to 14 climatic variables including SDU. We

have extracted from FAOCLIM2 long-term SDU monthly averages for 53 stations in WEA, i.e. 12

monthly SDU values per station. The location of the 53 stations is given in Figure 1b as orange

dots.  These long-term monthly averages are computed over time periods which vary across

stations but are generally within the period 1951–1990.

To ensure the reliability of these long-term monthly averages, a quality check of FAO

data against independent sources for a few stations has been performed (see supplementary

material). These include unpublished records from RoC meteorological services and long-term

monthly means from a variety of publications (references provided in supplementary material).

At Douala (Cameroon), old and more recent records show quite large discrepancies, associated

with  a  documented  shift  of  the  station  location  possibly  combined  with  a  change  in  the

recording instruments. At Bangui (CAR), Callède and Arquisou (1972) found that old sunshine

records,  based  on  unknown  instruments,  were  underestimating  SDU  compared  to

measurements made using Campbell-Stokes heliographs.  A similar  change of  instruments at

Douala may then explain the higher SDU values published as 1961-1990 climatological normals

(WMO, 1998) compared to 1931-1960 normals (WMO, 1969), the latter being retained in the

FAO database. A few other cases of poor agreement between the different sources (e.g. at Port-

Gentil, Gabon) remain of unknown origin. On the whole however, the comparison reveals a

relatively  good  agreement  between  FAO  data  and  other  sources  at  most  stations,  with

discrepancies seemingly due to the length of records available and the differing periods. The

FAO database was therefore used as is, with the exception of the station of Dolisie (RoC) which
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has been removed because of unreliable data, while for the station of Pointe Noire (RoC) the

inconsistent value for December, i.e. 0h day-1, has been replaced by the annual mean which

equals 4.1h day-1. This is consistent with the mean value obtained from the OGIMET database

(see sub-section below) for December and the period 1999-2018, and which equals 4.25h day-1.

2.3. Sunshine duration and cloud cover in-situ measurements from SYNOP reports

SYNOP reports issued from national meteorological agencies and collected via WMO’s

Global  Telecommunication  System,  were  extracted  from  the  OGIMET  database

(http://www.  ogimet  .com/index.phtml.en  ).  For our study purposes, we extracted daily SDU and

3-hourly cloud cover (both total and low cloud cover) data for 17 stations across WEA (Figure 1c,

blue dots). The period covered is 1999-2018. SDU values are given in hour per day. Cloud cover

data  are  in  octas,  ranging  from 0  for  clear  skies  to  8  for  totally  overcast  skies.  To  enable

comparisons  with  SDU,  only  daytime  cloud  cover  records  (from  0600  to  1800  GMT)  were

considered, and a daily average was computed only if at least 3 out of 5 three-hourly records

were available.

The  best  documented  stations  amongst  the  17  stations  available  are  Pointe  Noire,

Brazzaville,  Douala,  Bangui,  Libreville  and  Port-Gentil.  The  least  documented  ones  are

Gamboma,  Impfondo  and  Makokou  (Figure  S1).  Note  also  that  there  are  only  15  stations

common to both FAO and SYNOP databases.

2.4. Data sets comparison and measures of skill

Given the time resolution of the databases studied, SYNOP reports were compared to

SARAH-2 in terms of both mean annual cycles and the daily variations. Additionally,  SDU mean

annual cycles were compared between SARAH-2 and FAO data. Note also that we did not work

with the relative sunshine duration, i.e. SDU divided by day length as in the equatorial band the
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length  of  daylight  undergoes  very  little  variations  in  the  course  of  the  year:  the  largest

differences in the daylight length between the northernmost and southernmost stations studied

(i.e. Bossangoa, CAR, and Muanda, DRC) are observed at the two solstices, and do not exceed 45

min.

To determine SARAH-2’s accuracy at estimating SDU for WEA, a variety of measures was

applied.  Firstly,  Pearson correlation  coefficient  (and  the corresponding  p-values)  and biases

(difference between SARAH-2 and in-situ SDU values) were computed. The aim is to assess the

spatial and temporal matches and point out over- or under-estimations in SARAH-2 estimates as

compared to in-situ measurements for specific areas or seasons. These measures are especially

used when dealing with mean annual and mean monthly SDU levels. Secondly, we also applied

metrics usually used for forecasts verifications (Wilks 2011) but also for satellite estimates and

models performance assessment (e.g., Amjad et al 2020, Maranan et al 2020): the Probability of

Detection (POD hereafter),  the False Alarm Ratio (FAR hereafter) and the Heidke Skill  Score

(HSS). These measures are applied when analyzing SDU at the daily time-scale. Indeed, at this

time-scale, daily SDU levels do not follow a normal distribution (cf.  section 4.c),  so Pearson

correlations and biases are less appropriate. Second, POD, FAR and HSS which are categorical

skill scores are less sensitive to bias.

POD and FAR are computed for “dark days” (least sunny) and “bright days” (sunniest)

separately. Dark days are defined as days recording SDU values below the 25th percentile. Bright

days  are  those  recording  SDU  values  above  the  75th percentile.  Two  two-dimensional

contingency tables are issued: one for the dark days where SDU raw values are categorized

according  to  the  25th percentile,  and  one  for  the  bright  days  where  SDU  raw  values  are

categorized according to the 75th percentile. Table 1 provides an example of such contingency

tables. 
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In-situ (SYNOP)

≤25% (≥75%) >25% (<75%)

SARAH-2

≤25%

(≥75%)
Hits (H) False Alarms (FA)

>25%

(<75%)
Misses (M)

Correct

Negatives (CN)

Table 1: Example of contingency table for assessing SARAH-2 skills to detect either dark (25th percentile) or

bright (75th percentile) days.

POD corresponds to the fraction of bright (or dark) days observed at the stations and correctly

detected  in  SARAH-2  (i.e.  POD  =  H/(H+M)  in  Table  1).  A  perfect  score  equals  1.

Complementarily,  FAR is the fraction of  bright  (dark) days  (i.e.  25 th >  day > 75th percentile)

incorrectly detected by SARAH-2, i.e. not observed at the stations (i.e. FAR = F/(H+F) in Table 1).

A perfect score equals 0. Lastly, HSS is a measure of accuracy relative to that of chance. HSS=

(H+CN-e)/(CN-e), where e is the correct random forecasts. A perfect score equals 1, a score of 0

indicates no skill.  Note that unlike POD and FAR, HSS is not defined separately for dark and

bright days but from a three-dimensional contingency table.

2.5. Clustering of the mean annual cycles

The K-means clustering analyses applied here have two objectives: (i) discriminate sub-

regions within WEA according to the shape and amplitude of the mean annual cycle and (ii)

verify  SARAH-2  capabilities.  Two  different  approaches  have  been  tested:  (1)  a  K-means

clustering of FAO SDU data followed by projections of the clusters onto SARAH-2 SDU data, and

(2) two K-means clustering analyses independently applied to FAO and SARAH-2 SDU data.  Only

the results from this latter approach were retained as with the former one, the cluster which
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depicts  the least  sunny stations does not  show up in SARAH-2 due to the systematic over-

estimation of SDU in this product.

A solution with four-cluster was retained as optimal with coherent and sounding spatial

patterns and the highest silhouette coefficient. This coefficient was computed using the mean

intra-cluster distance and the mean nearest-cluster distance. It varies between -1 to 1, with 0

indicating overlapping clusters, and negative values indicating an assignment to a wrong cluster.

3. Results

3.1. Mean annual spatial distribution of sunshine duration across Western Equatorial Africa

The mean annual fields of SDU as depicted from SARAH-2 satellite estimates, and FAO

and SYNOP surface measurements are provided in Figure 2. Firstly, annual SDU levels are quite

low: on average they do not exceed 6.7 h day-1 for SARAH-2 (FAO: 5.2  h day-1, SYNOP: 4.8  h day-

1), ranging from 1.4 h day-1 (3.2 h day-1) for the least sunny pixels (station) to 10.6 h day-1 (7.7 h

day-1) for the sunniest ones. Secondly, although computed at different time periods, the spatial

patterns of SDU are in good agreement between the three databases. The least sunny places are

in the vicinity of the Cameroon volcanic ridge (e.g. Douala, Malabo), of the Monts de Cristal and

Nyanga valley (e.g. Tchibanga) in Gabon, and extend to the south of RoC (Loubomo) and DRC

(Kondo,  Luki and Gimbi-Plateau).  Their mean annual SDU is below 5 h day-1 in SARAH-2 and

below 4 h day-1 in FAO and SYNOP. From this band of low SDU somewhat parallel to the Atlantic

Ocean  coast,  durations  gradually  increase  inland.  Satellite  estimates  also  show  that  SDU

increases offshore and is thus higher over the ocean.
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Figure 2: SDU mean annual fields for a) SARAH-2, b) FAO and c) SYNOP

Figure 3a-c presents scatter-plots between the mean SDU annual values of the three

databases taken two by two: FAO against SYNOP, SARAH-2 against FAO, and SARAH-2 against

SYNOP. The agreement between the 15 stations common to the two surface databases (FAO
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and SYNOP,  Figure  3a)  is  good.  The correlation coefficient  reaches 0.86 suggesting that the

spatial distribution of SDU is comparable between the two databases. The mean regional bias is

weakly positive (0.2 h day-1) indicating that SDU levels are slightly higher in SYNOP, especially for

the sunniest stations as suggested by the slope of the regression line. Scatter-plots for SARAH-2

against  FAO  or  SYNOP  and  the  respective  correlation  coefficients  confirm  that  the  spatial

distribution  of  SDU  mean  annual  values  is  well  captured  by  SARAH-2.  However,  the  large

positive biases (~1.4 h day-1) indicate that SARAH-2 strongly overestimates SDU levels for WEA.

The slope of the regression lines suggests that the less sunny the station, the larger the biases.

Maps of  raw biases  (Figure 3d-f)  do not  exhibit  any particular  spatial  pattern.  Some

stations in Cameroon display biases above 2.5 h day-1, reaching ~3 h day-1 at Douala and Bitam.

Douala’s large bias may be attributed to the uncertain reliability of the FAO record, as discussed

previously. However it can be seen in Figure 4i-g that stations at or close to the coast which are

also the less sunny, tend to have higher relative biases (above 50%).
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Figure 3: Top: scatter-plots and corresponding regression lines for SDU annual mean for a) SYNOP

against  FAO, b) FAO against  SARAH-2 and c) SYNOP against SARAH-2 (1 point = 1pixel/station).  The time-

period for computing the annual mean for SARAH-2 is 1983-2017 in b), and 1999-2017 in c) (black circles are

for  1983-2017).  The  Pearson  correlation  coefficients  (with  their  corresponding  p-values)  and  biases  are

14

273



annotated. Middle and bottom: maps of raw and relative biases for d-g) SYNOP minus FAO, e-h) FAO minus

SARAH-2 and f-i) SYNOP minus SARAH-2.

3.2 Seasonal evolution of sunshine duration

3.2.1 SARAH-2 skill and biases along the annual cycle

The mean spatial distribution of SDU in WEA for the representative months of January,

April, July and October, and the three databases is displayed in Figure 4. In SARAH-2 (top panels)

the highest SDU levels (>6 h day-1) are observed in January, during the boreal dry season, with

maxima in the northern part of the study region. The lowest levels (<5 h day-1) are recorded in

July, during the austral dry season, except for a band stretching from the center of RoC to the

north of Angola where levels are the highest of the year. This band encompasses the western

escarpment  and  the  summit  of  the  Batéké  plateaus  characterized  by  an  encroachment  of

savanna in the rainforest (Verhegghen et al. 2012). At the coast and within a ~150km-wide band

inland, SDU levels are particularly low: less than 3 h day-1.  The months of April and October

correspond to the core of the two rainy seasons. However SDU levels are not as low as in July,

during the austral dry season, a typical feature of WEA (Philippon et al. 2016; Bush et al. 2020).

April is slightly sunnier than October but not as sunny as January.
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Figure 4: January, April, October and December SDU mean monthly fields for SARAH-2 (top), FAO (middle) and

SYNOP (bottom).

The spatial match between SARAH-2 and FAO-SYNOP in the course of the annual cycle is

further  assessed  through  monthly  scatter-plots  presented  in  Figure  5.  Firstly,  scatter-plots

clearly display the evolution in the range of SDU levels along the annual cycle: the March-May

rainy season is the one when spatial differences in SDU mean levels are the smallest (<4 h day-1)

across WEA as opposed to the June-August dry season (>6 h day-1). Secondly, the largest biases

(>2 h day-1) are in December-February, the boreal winter dry season, and the lowest are in May-

June and September-October, i.e. the transition months between the two rainy seasons and the

austral  winter  dry  season.  The  best  spatial  agreement  (correlation  coefficients  ≥  0.85),  is

observed in June-September (austral winter dry season) when SDU levels are the lowest, then in
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November-December.  Lastly,  the slope of regression lines also indicates that the agreement

between SARAH-2 and in-situ measurements is better at the sunniest stations.

Figure 5: Scatter-plots and corresponding regression lines between SARAH-2 and FAO (orange), or SARAH-2

and SYNOP (green) SDU monthly means (1 point = 1pixel/station). Regression lines, correlation coefficients

(and their p-values) as well as biases are annotated.

The match between databases at station scale for the mean annual cycle is provided in

Figure  6  through  correlation  coefficients  between  the  three  databases  taken  two  by  two.

Generally  speaking,  the  best  correspondence  is  observed  for  the  northernmost  and

southernmost  stations.  This  is  related  to  the  fact  that  SDU  annual  range  is  higher  and  its

seasonality is more pronounced at these stations. Discrepancies are larger for the Gabonese

stations as well as the stations to the center and the north of RoC. SDU annual range is small at
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these stations and many RoC stations have short recording periods in SYNOP (Figure S1). The

bad fit for Brazzaville in SARAH-2 vs. FAO or SYNOP in contrast to the good fit between FAO and

SYNOP, suggests that the annual cycle inferred from SARAH-2 is wrong for this location.

Figure 6:  Maps of the correlation coefficients between mean annual cycles for the three databases taken two

by two. Grey edged circles represent correlations significant at the 99% level.

Lastly, the SDU annual cycle from FAO, and the SARAH-2 biases with respect to FAO for

the 53 stations ordered from north to south are presented in Figure 7. Stations showing the

largest seasonal variations are located in the north (highest SDU in boreal winter) and in the

south  (highest  SDU  in  austral  winter),  but  there  are  many  stations  where  this  pattern  is

substantially  altered.  These  stations  are  characterized  by  very  low  SDU  values  in  June-

September (extending to October in the south), whatever the latitude is. They are all located in

the western part of the region, along and close to the Atlantic Ocean. The southern part of the

region is therefore remarkable by its strong contrasts in SDU annual cycles. In SARAH-2, biases

are the largest (and positive) for the northernmost and southernmost stations and the boreal

winter dry season (December-February). Apart from this, it is noteworthy that there is not any

systematic bias especially for the least sunny stations and months.
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Figure 7: Evolution along the annual cycle of a) SDU in FAO and b) raw biases in SARAH-2 vs FAO for each of

the 53 stations available. Stations are ordered from the northernmost to the southernmost one. In a)  black

(white) triangles denote months of maximum (minimum) SDU.

3.2.2 Regionalisation of Western Equatorial Africa based on SDU mean annual cycle

Analyses developed in the above sections suggest  that SARAH-2 reproduces well  the

spatial patterns of SDU mean seasonal evolution in WEA but is affected by large positive biases.

They also suggest that differences exist between stations in the timing of minima and maxima

during the annual cycle. These points are further explored through a distinction of WEA into

sub-regions based on two K-means clusterings applied independently on FAO and SARAH-2 SDU

mean annual cycles.
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Results are provided in Figure 8 with the spatial patterns displayed in panel a (with FAO

stations as circles) and the corresponding annual cycles in panels b and c for FAO and SARAH-2

respectively.  The  clusterings  discriminate  first  stations/pixels  to  the  NE  (“trop.  inland

northeast”, colored in orange, comprising CAR, N Cameroon and DRC) and the SE (“trop. inland

southeast”, colored in grey, comprising S DRC) which are both tropical inland patterns but with

reversed annual  cycles:  maxima are in December-January  and June-July,  and minima are  in

August and December respectively. Secondly, it discriminates stations to the west (“coastal”,

colored in  green,  comprising  S  Cameroon,  Gabon,  SW RoC and DRC)  and the east  (“equat.

inland”, colored in purple, comprising Central RoC and DRC, as well as coastal Angola). These

stations/pixels are characterized by (i) lower SDU levels than the tropical inland NE and SE, and

(ii) maxima shifted to August-September. Despite their very different locations, the coastal and

tropical inland NE regions have remarkably similar annual cycles except that the coastal region

has a much lower SDU, by 25 to 50% in any month. Actually, besides differences in the annual

mean SDU and amplitude of the annual cycle, the cluster's differentiation is mainly controlled by

how much does SDU in boreal summer differ from the rest of the year.

Lastly, it is noteworthy that the borders of the four regions extracted either from FAO or

SARAH-2 match quite well. Because of the positive biases in SARAH-2, the brightest region, i.e.

the tropical inland north (orange), is slightly moved southward as compared to FAO. Similarly

the least  sunny region,  i.e.,  the coastal  one (green) has  a  more restricted spatial  extension

towards the north and east as compared to FAO.
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Figure 8: Characteristic regions of SDU in WEA according to the mean annual cycles, and based on k-means

clustering analyses performed independently for FAO and SARAH-2. The solution with 4 clusters has been

retained. a) Location of the 4 classes with FAO stations as circles, and SARAH-2 pixels as colored fields. b) and

c) Corresponding mean annual cycles for FAO and SARAH-2 respectively with error bars for +/- 1 std. In b)

dashed lines give  SDU mean annual  cycle  computed from the SARAH-2 pixels  corresponding  to the FAO

stations of the cluster.

3.3.3 SDU's mean spatial distribution dependence on topography

While in figure 8 the delineations between clusters east of 15°E are relatively zonal, the

inland boundary of the “coastal” region is complex, suggesting that local features have a major

influence. WEA is characterized by a complex topography (Figure 1) organized around several

inland plateaus (Bamiléké in Cameroon, Batéké in RoC) and mountain ranges (Cristal and Chaillu
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in Gabon, Mayombé in RoC and Western DRC). With the exception of the volcanic peak of Mt

Cameroon (4090 m) in the northwestern corner of the region, these mountains and plateaus are

of low elevation: most of them culminate around 1000 m, but they are relatively parallel to the

coastline.  They  are  intersected  by  several  valleys,  e.g.  the  upper  Ogooué  and Niari  valleys.

Although there is a large coastal  plain in Gabon at the mouth of the Ogooué,  other coastal

plains  are  relatively  narrow  (<100  km).  In  order  to  investigate  the  potential  influence  of

topography on SDU spatial  organization during the annual  cycle,  we used the USGS Shuttle

Radar Topography Mission (SRTM) topographical data at 30 sec. resolution, re-gridded at 0.05°

to match with SARAH-2.

Scatter-plots (not shown) between SARAH-2 SDU mean monthly values and altitude do

not depict any clear dependence of SDU on altitude. Similarly, spatial correlations computed

between SDU and altitude over 2° square sliding windows for the 4 months of interest,  i.e.

January, April, July and October, picture inconsistent patterns (not shown). More interesting are

the relationships with slope and aspect provided in Figure 9, and which focus on the regions

south of the equator. SDU tends to be slightly higher on flat terrain in whatever month. In July

and October, strong contrasts in SDU levels are pictured between the northeast (high SDU) and

southwest-facing slopes (lower SDU). In July, differences in SDU mean levels between the two

orientations exceed 2 h day-1 (the steepest the slope, the greatest the contrast). These contrasts

might be explained by the dominant wind direction, the atmosphere stability and the type of

clouds  in  presence.  In  the  eastern  equatorial  Atlantic  and  adjacent  coastal  areas,  low-level

winds are south-southwest throughout the year (Lacaux et al. 1992; Neupane 2016). Southwest-

facing slopes might act as a barrier to the low-level winds, triggering cloudiness as the air-mass

is forced to uplift (which in turn strongly dampens the incoming solar radiation). But the strong

interaction found with topography in July (and somewhat in October) may be related to the fact

that the lower troposphere is very stable at this time of the year while in the rest of the year it is

much  more  unstable,  resulting  into  widespread  ascending  motion  (Cook  and  Vizy  2015;

Longandjo and Rouault 2020). Even if  the genesis of convective clouds may be impacted by
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interactions between low-level flow and topography, their subsequent drift in the direction of

the easterly mid-tropospheric winds may blur any relationship with topography. In contrast, the

low-level stratiform clouds which develop in June-September in a more laminar flow are likely

less mobile than the convective clouds, so that their spatial spread is much more prone to be

controlled by topography.

Figure  9:  Relationships  between  monthly  SDU  from  SARAH-2,  and  slope  and  aspect  from  a  Digitalized

Elevation Model for pixels south of the Equator only. DEM values were regridded to SARAH-2 resolution.  The

mean SDU is given for each slope/aspect couple.

To further document these contrasts linked to topography, SDU levels are plotted along

a SW-NE cross-section running through RoC, from the Atlantic coast at Pointe Noire (~12°E) to

Impfondo (~18°E, cyan dashed line in Figure 1) for the four months of interest (Figure 10, upper
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panel, thick lines). This cross-section intersects the Mayombé Massif and the Batéké plateaus

(Figure 10, bottom panel). For validation purposes, SDU levels recorded at seven stations along

the cross-section are also reported. The influence of aspect on SDU is clearly the strongest in

July. The orographic effect of Mayombé and Batéké plateaus is obvious: their south-west facing

slopes record SDU levels much lower than their summits and east-facing slopes suggesting that

cloudiness is larger on SW facing slopes. The sheltering effect of Batéké plateaus is striking and

coherent between SARAH-2 and in-situ measurements despite the systematic bias. In October,

the Mayombé coastal range still has an effect, but inland, while SDU remains low, topography

does not seem to play a significant role any more. On the whole, SARAH-2 well captures SDU

levels variations along the cross-section and the annual cycle even if some discrepancies exist:

in-situ records suggest that SDU levels are higher in April than January in the western part of the

transect, i.e. on the SW facing slopes west of Djambala. This feature is not well captured by

SARAH-2 where values are quite similar between the two months. Conversely, SDU levels east

of Djambala are higher in January than in April (they are quite constant in April) which is well

depicted  by  SARAH-2.  In-situ  records  also  suggest  that  SDU  levels  on  SW  facing  slopes

(Dimonika, Mouyondzi) are lower in July than in October. The reverse is observed in SARAH-2:

SDU levels are lower in October than in July at these two locations.
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Figure 10: Variations of elevation (bottom) and SDU (top) in WEA along a SW-NE cross-section starting from

Pointe-Noire and ending at Impfondo in RoC via the stations of Dimonika, Dolisie,  Mouyondzi,  Djambala,

Gamboma (cf Fig.1). Top: one color for each of the four representative months of January, April, July and

October; thick lines for SARAH-2 SDU; dots for FAO SDU at the given station.

3.3. SARAH-2 accuracy at the daily time-scale: focus on the austral  winter dry season (June-

September)

As SYNOP provides daily SDU records, this database is used to assess SARAH-2 accuracy

at daily time-scale. Only 16 couplets of “station-pixel” are available for analysis: Gamboma has

been excluded because of a too small number of data for the period 1999-2017 common to the

two databases (Figure S1). In addition, missing dates in each database have been respectively

masked in the other one. In this section a focus is put on the June-September dry season. This

season pictures the lowest SDU levels over most of the SYNOP stations under analysis because

of the presence of a large low-level cloud cover. It is also the season for which SARAH-2 biases

are the lowest (cf section 3.2).
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Figure  11  presents  the  distribution  of  SDU  daily  values  for  SARAH-2  and  SYNOP

considering the whole year (panel a) and the June-September season only (panel b). In WEA,

according to SYNOP the most frequent days are those recording less than 1h of sunshine. This is

particularly so in June-September, the overcast dry season: the least sunny days (SDU<1h day-1 )

account for 25% of the total number of days. In SARAH-2, the number of sunless days is 50%

lower than in SYNOP. Reciprocally, there are more than twice as many days recording more than

9h of sunshine in SARAH-2 as compared to SYNOP. This suggests that there are both too many

clear-sky days and not enough totally  overcast days in SARAH-2. Therefore,  biases found in

SARAH-2  at  the  annual  and  monthly  time-steps  in  the  previous  sections  are  linked to  this

twofold problem.

Figure 11: Distribution of daily sunshine in WEA for a) the whole year and b) the June-September cloudy dry

season, in SARAH-2 (grey bars) and SYNOP (black curve) for the period 1999-2017. The full grey and dashed

black thin curves give the cumulative distribution for SARAH-2 and SYNOP respectively.

Given these large biases, SARAH-2 accuracy for properly estimating sunshine duration

for a given day is evaluated using categorical metrics, the Probability of Detection (POD), the

False  Alarm Ratio (FAR)  and the Heidke Skill  Score  (HSS,  cf  section 2.4),  in  addition to the

Pearson correlation coefficient. Scores obtained are presented in Figure 12. The linear match at

26

450

453

456

459

462

465



daily time-scale between SARAH-2 and SYNOP (Figure 12a,b) is globally good: at ~13 out of 16

stations, correlations are above 0.75 (i.e. 56% of common variance at least). The HSS are >0.4, at

six stations out of 15, namely Douala, Port Gentil, Brazzaville, Pointe Noire, Bangui, Libreville

(the best documented stations, Figure S1), indicating that SARAH-2 performs statistically much

better than chance at identifying the least sunny and the sunniest days. Conversely, HSS are

<0.1 at eight stations. For these stations SARAH-2 only performs slightly better than chance. This

also suggests that for these stations correlations are driven by the skill for “average days” (i.e.

days with SDU values between the 25-75th percentiles). Stations with the lowest correlations

and HSS scores are the Gabonese stations (noticeably Mvengue and Makokou), those at the

center and north RoC (Ouesso, Djambala) plus Malabo. POD scores are almost always >0.6, i.e.

more than 60% of  the least  sunny (sunniest)  days  in  SARAH-2 are  actually  the least  sunny

(sunniest) days in SYNOP. FAR scores are almost always <0.3, i.e. less than 30% of days detected

as the least sunny (sunniest) by SARAH were not so in SYNOP. Again Mvengue, Makokou and

Malabo stand out with low POD / high FAR scores, especially for the leat sunny days. This is

consistent with the low correlation and HSS scores obtained for these stations.
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Figure  12:  a-b: scatter-plots  of  Heidke Skill  Scores  and Pearson correlation coefficients  for  the 16 SYNOP

stations retained for analysis and the whole year (a) or the JJAS season only (b). c-f: scatter-plots of HR and

FAR scores for dark (c,d) and bright (e,f) days considering the whole year (c,e) or the JJAS season only (d,f).

The names of stations recording the lowest scores are provided. In a-b HSS are both for dark and bright days.
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As a last step, taking advantage of the cloud cover data provided in SYNOP database, we

briefly analyze relationships between SDU and cloud cover for the June-September overcast dry

season only. The aim is to verify that the relationship observed in SYNOP is properly reproduced

in SARAH-2. Results are provided in Figure 13 considering the total cloud cover (TCC, left panels)

and  the  low cloud  cover  only  (LCC,  right  panels),  and  all  the  stations  together  (results  for

individual stations and LCC are provided in Figure S2 of the supplementary material).

Firstly, SDU levels are globally well discriminated across classes of octas, with regularly

decreasing SDU levels as cloud cover increases for both TCC and LCC. On average, in JJAS, clear

sky days (zero octa) which are rare (22 days in total) coincide with SDU levels around 8h day-1

according to SYNOP. To the contrary, totally overcast days (8 octas) are associated with SDU

levels  below  1h  day-1.  A  few  inconsistencies  are  nonetheless  observed  for  the  clearest

days/skies. For the 1-octa class and LCC SDU levels are lower than or equal to SDU levels for the

2-octa class. These inconsistencies come from a few stations (Impfondo, Bangui, Ouesso and

Djambala,  Fig.  S2).  Several  hypotheses  can  be  proposed  to  explain  these  discrepancies,

especially  given the fact  that  SDU is  measured with an  instrument  while  cloud reports  are

performed  by  observers.  Inaccuracies  in  cloud  observations  or  inconsistencies  between

observers may be greater when skies are slightly cloudy and/or clouds are broken. The number

of daytime cloud cover observations may also be insufficient to be representative of the day

while sunshine duration is an integration over daytime hours.
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Figure 13: Boxplots of June-September SDU vs total (TCC) and low (LCC) cloud cover for SYNOP (panels a,b)

and SARAH-2 (panel c,d) for the period 1999-2017. TCC and LCC records are expressed in octas from 0 for

clear skies, to 8 for totally overcast skies, and come from SYNOP. Boxes extend from the lower to the upper

quartile of data with the median as an orange line. Green triangles give the mean. Circles are outliers beyond

the  lower  or  upper  quartile  divided  by  the  interquartile  range  (whiskers).  The  number  of  available

observations (day x station/pixel) by class of cloud cover is given at the top of panels a,b.

Secondly,  SDU  levels  are  lower  for  LCC  compared  to  TCC  (for  the  same  cloudiness

amount). In addition the dispersion of SDU values for a given cloudiness amount is greater when

considering LCC than TCC.  These points suggest  that  (1)  low clouds are not the only clouds

which reduce incoming solar radiation (if LCC = 4, TCC may vary between 4 to 8 octas) and (2)

they are not as good as TCC to match SDU variations which is expected. Nonetheless low clouds

have a particularly strong impact on SDU in JJAS as compared to the other types of clouds as
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illustrated  in  Figure  S3.  This  figure  compares  SDU  levels  when  the  cloud  cover  (TCC)  is

dominated by middle and high clouds (LCC<3octas, panel a) to those when the cloud cover is

dominated by low clouds (LCC = TCC, panel b). SDU levels are systematically and significantly

higher when TCC is mainly composed of low clouds as compared to middle and high clouds. The

mean  bias  evolution  along  octas  classes  (not  shown)  is  very  subtle,  indicating  that  bias  in

SARAH-2 does not depend much on the cloud coverage. Overall, the general tendency from this

comparison between SDU and cloudiness is that in JJAS SDU can be viewed as a good proxy for

the presence of an extensive low-level cloud cover.

4. Discussion and conclusion

Because of the importance of solar radiation for climate and ecosystems functioning,

especially that of the tropical forests, but due to the lack of long-term in-situ solar radiation

data for WEA, we were led to investigate sunshine duration records. To quantify mean spatial

and  temporal  evolutions  of  sunshine  duration in  the  course  of  the  annual  cycle  we jointly

analyzed in-situ measurements from the FAOCLIM database, SYNOP reports from OGIMET, and

satellite estimates provided by CMSAF within the SARAH-2.1 data set. The good spatial coverage

of  FAOCLIM  complemented  by  SYNOP  reports  allowed  a  much  finer  characterisation  of

irradiance for WEA than done in previous studies dedicated to SDU in tropical Africa as in Kothe

et al (2017).

On the whole, WEA displays low SDU levels: SDU annual average is around 5h day-1 with

the lowest levels at the coast (<4 h day-1) and the highest ones to the southeast and northeast

fringes (>6 h day-1).  Most stations register minimum levels in July-September and maximum

levels in January–March, except the southeastern-most ones which exhibit an opposite pattern.

The July–September low levels of sunshine duration are due to a large cloud fraction – most of

the days record a cloud fraction above or equal to 4 octas – mainly resulting from low-level

clouds. SDU spatial distribution in July is tightly controlled by topographic features: for instance,
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the  leeward  slopes  of  Mayombé  and  Batéké  plateaus  are  three  times  sunnier  than  the

windward slopes. This likely related to the dominant southwesterly monsoon winds which blow

over the region during this season, combined with a stable low-level troposphere.

While SARAH-2 satellite estimates fairly well reproduce the spatial and seasonal patterns

of  sunshine  duration  in  WEA,  sunshine  duration  is  consistently  overestimated.  This

complements and is in line with results by Kothe et al. (2017) for the neighboring West Africa,

CAR and South Sudan areas. These authors observe a mean annual bias of more than 1.6 h day-1

for SARAH-2 for these regions, with the largest bias for the months of September to November.

In WEA, there seems to be a tendency for a larger overestimation during the boreal  winter

months (December–February), especially to the north which experiences a sunny dry season,

than during the boreal summer months (July-September), when most of the region experiences

an overcast dry season. Analyses at the daily time-scale show that overestimation arises from

too few days with SDU levels below 2 h day-1 – these days are the most frequent over the

region, especially in June-September – and too many days with SDU levels above 9 h day-1.

The reasons suspected for such overestimations are (i) errors in in-situ measurements,

(ii) determination of the maximum reflectivity in regions with frequent milky skies as WEA, (iii)

high altitude thin clouds and (iv)  thresholds and parameters in algorithms not valid for  the

region.

Although  this  cannot  account  for  all  the  SARAH-2  biases  found in  this  study,  in-situ

sunshine measurements are error prone. Callède and Arquisou (1972) found a difference of 5%

between  sunshine  duration  recordings  obtained  at  two  nearby  locations  in  Bangui,  CAR.

According to Iqbal (1983), the reliability of the Campbell-Stokes heliograph, generally used to

record sunshine duration, may be affected by the humidity of the recording card. However, the

fact that the difference between in-situ records and SARAH-2 satellite estimates in WEA are

even larger in the boreal winter dry season suggests that this is not a major reason for the

discrepancies found in the region.
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Milky skies are thought to be particularly common over the region due to high water

vapor content due to the proximity of the ocean and transpiration from the underlying dense

evergreen forests, and/or aerosols. Aerosols loadings in the WEA atmosphere principally stem

from local  and neighbouring  (Angola,  CAR)  biomass  burnings,  and are  the largest  in  boreal

summer (Liousse et al. 2010; Sayer et al. 2019). But aerosols from Saharan mineral dust have

also been traced down to Central Africa (Ruellan et al. 1999).  Drame et al (2015) obtained for

the neighbouring West African region significant improvements in the estimation of incoming

solar radiation by considering diurnal variations in both aerosol loads and composition. Actually,

aerosol load variations are not explicitly treated in SARAH-2 retrieval which could also explain

biases observed (Neher et al 2020).  

But aerosols would also prevent satellite retrieval from detecting clouds at all, especially

the low-level ones. For instance over the adjacent SE tropical Atlantic, low clouds lay under the

aerosol plumes (Leblanc et al. 2020), while those inland have a cloud top temperature close to

the ground one. High altitude thin clouds might also strongly influence satellite estimates more

than in-situ observations. Dommo et al. (2018) show that during the June-September season,

WEA regularly  experiences  a  high  semi-transparent  cloud  coverage:  its  fraction  reaches  on

average 20%.

In  the  satellite  retrieval  used  for  the  generation  of  the  SARAH-2.1  data  record,  the

measured reflectivity is compared to the so-called 'clear sky reflectivity', which is derived as the

minimum reflectivity throughout the month. In almost all situations the minimum reflectivity

corresponds to a clear sky situation. However, in areas with regular cloud coverage and/or very

milky skies as in WEA, no clear sky situation might be observed from the satellite in several

months. In this case the 'clear sky reflectivity' (i.e, the minimum reflectivity) does not represent

clear  sky  conditions,  but  ‘milky’  /  partly  cloudy conditions.  As  a  consequence,  the  contrast

between clouds and the ‘clear sky reflectivity’ is reduced, clouds appear too dark and, hence,

too thin in retrievals, resulting in an overestimation of surface irradiance and possible sunshine
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duration. This has also been suggested as the reason for the overestimation of surface solar

irradiance in West Africa in the SARAH data set (Hannak et al. 2017; Kniffka et al. 2019).

In addition, thresholds and parameters values used for the estimation of SDU from DNI

might not be appropriate for the region. The actual DNI threshold used in SARAH-2 for bright

sunshine  equals  120  W/  m2  following  the  WMO  definition,  however,  for  the  surface

measurements this threshold may vary from 70 W/m2 for a dry climate to 280 W/m2 for a very

humid climate according to Suehrcke et al. (2013). This raises the question of the comparability

of the satellite-based and the surface-measured sunshine duration, even though it is expected

that  the sunshine duration is  only moderately  sensitive to the exact value of  the threshold

radiation. These points definitely require further analysis so that the future versions of SARAH

data set are corrected for these biases for the region.

As sunshine duration is computed from solar direct normal irradiance (DNI, cf section 2),

our results indicate that solar surface irradiance itself is also over-estimated in the SARAH-2.1

dataset for the region. Such an overestimation might be critical for several applications that use

these  estimations,  for  instance  the  energy  sector,  but  also  hydrological  and  agronomic

modelling, climate variability and trends analyses.

The  deployment  of  any  solar  power  plant  at  a  given  location requires  accurate  and

precise  solar  resource  assessment  at  that  location  (e.g.,  Yushchenko  et  al.  2018).  Global

horizontal  irradiance  (GHI)  which  includes  both  direct  normal  irradiance  (DNI)  and  diffuse

horizontal irradiance (DHI) is the key value to estimate the final energy yield of a PV project

(e.g., Neher et al. 2020). Likewise, DNI is the key value to estimate the final energy yield of a CSP

project (Blanc et al. 2014; Hagumimana et al. 2021).  Because SDU in this study is calculated

from satellite-derived SARAH-2.1 DNI, biases in SDU over WEA point to some extent toward

biases in DNI which may result in uncertainty in the power output of the plant and endanger its

financial feasibility (or bankability; Polo et al. 2016). Therefore, it would be recommended to

apply  a  site-adaptation  procedure  to  reduce  uncertainty  in  the  satellite-based  long-term
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estimates of DNI from SARAH-2.1 by combining them with a short-term ground measurement

campaign at the site of the CSP project (Polo et al. 2015; Fernández-Peruchena et al. 2020).

Similarly,  SDU  and  solar  radiation  are  widely  used  as  inputs  in  crop/vegetation

modelling.  Bois  et  al  (2008)  note  that  the  propagation  of  uncertainties  in  solar  radiation

estimates  at  daily  time-scale  can  be  considerable  for  solar  radiation  based ET  estimations.

Uncertainties in calculated or estimated SDU and SR have also been shown to have significant

impacts on yields’ simulations (e.g. Wang et al 2015). Tests should be conducted to assess, for

the region,  differences  obtained in the simulation of  ET,  yields etc,  when using SDU in-situ

measurements  vs  SARAH-2.1  estimates.  It  would  also  worth  evaluating  what  would  be  the

added  value  of  interpolating  SDU  in-situ  measurements  using  SARAH-2.1  SDU estimates  or

converting  SDU  in-situ  measurements  into  GHI  with  the  several  existing  equations,  then

interpolating them using SARAH-2.1 (Good 2010). The use of SARAH-2.1 estimates without a

bias correction in the agronomic field for  the WEA region is  expected to lead to too much

potential evapotranspiration (and perhaps too fast phenological cycles).

Lastly,  despite the overestimations observed,  skill-scores obtained at  daily time-scale

suggest  that  the  time  of  occurrence  of  the  least  sunny  and  the  sunniest  days  is  properly

reproduced. Actually, this is promising for studying the intra-seasonal and interannual variability

of  solar  radiation over the region. The 35-year long historical  records offered by SARAH-2.1

(Müller et al. 2015) should allow climate trends detection and analysis, if any, for the region.
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